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Abstract
This synthetic study explores the value of near-surface soil moisture and soil

temperature measurements for the estimation of soil moisture and soil tempera-

ture profiles, soil hydraulic and thermal parameters, and latent heat and sensible

heat fluxes using data assimilation (ensemble Kalman filter) in combination with

unsaturated zone flow modeling (HYDRUS-1D), for 12 United States Department

of Agriculture soil textures in a homogeneous and bare soil scenario. The soil mois-

ture profile is estimated with a root mean square error (RMSE) of 0.04 cm3/cm3 for

univariate soil temperature assimilation and 0.01 cm3/cm3 for univariate soil mois-

ture assimilation. Soil temperature assimilation performs better for soils with higher

clay content compared to soils with higher sand content. The latent and sensible heat

fluxes are estimated with smaller RMSE for univariate soil temperature assimilation

compared to univariate soil moisture assimilation for 8 out of 12 soil types. As the

climate condition changes from hot semi-arid to sub-humid climate, the soil mois-

ture assimilation performs better for high permeable soil but worse for low permeable

soil. In summary, the findings suggest that for most soil texture classes, assimilating

soil temperature in vadose zone models is skillful to improve latent heat flux, soil

moisture profile, and soil hydraulic parameters. Joint assimilation with soil moisture

can further enhance the accuracy of the model outputs for all range of soil texture

and climate conditions.

Abbreviations: CZO, Critical Zone Observatory; DREAM, Differential Evolution Adaptive Metropolis; EnKF, ensemble Kalman filter; ET,
evapotranspiration; H, sensible heat flux; LAI, Leaf area index; LE, latent heat flux; NDVI, normalized difference vegetation index; OL, open loop; P,
precipitation; PET, potential evapotranspiration; RMSE, root mean square error; SHP, soil hydraulic parameter; SM0, SM5, SM10, SM30, and SM50, soil
moisture assimilation at 0, 5, 10, 30, and 50 cm, respectively; SM550, Soil moisture assimilation at 5 and 50 cm; SMT5, soil moisture and temperature
assimilation at 5 cm; SMT550, Soil moisture and temperature assimilation at 5 and 50 cm; ST0, ST5, ST10, ST30, and ST50, Soil temperature assimilation at
0, 5, 10, 30, and 50 cm, respectively; ST550, Soil temperature assimilation at 5 and 50 cm; STP, Soil thermal parameter.
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1 INTRODUCTION

Soil moisture plays an important role in both the water cycle
(partitioning of rainfall into infiltration and runoff) and the
energy cycle (partitioning of net radiation into latent heat
and sensible heat) (Seneviratne et al., 2010). Knowledge of
root zone soil moisture is important in agriculture for opti-
mizing irrigation scheduling and crop growth (Vereecken
et al., 2008). In situ soil moisture is measured using differ-
ent types of accurate point sensors (Babaeian et al., 2019;
Walker et al., 2004a). In recent years, advances have been
made to estimate soil moisture at larger scales (e.g., 10
to 100 m) through ground-based sensors using cosmic ray
and gamma ray approaches (Bogena et al., 2013; Morrison
et al., 2016). Although such in situ measurements provide
accurate estimates of the soil moisture profile, they are inad-
equate to characterize the spatial variation of soil moisture
at regional or landscape scale. Many studies analyzed the
retrieval of surface soil moisture using microwave satellite
platforms (Karthikeyan et al., 2017; Tomer et al., 2016). How-
ever, these retrievals have limitations with regard to the spatial
and temporal resolutions. Moreover, retrievals using satel-
lite remote sensing do not have the ability to infer deeper
horizon soil moisture. Land surface models have a capabil-
ity to simulate the vertical soil moisture profile at the required
spatiotemporal resolutions using meteorological forcings, soil
information, and land surface parameters as inputs (Fisher &
Koven, 2020; Kumar et al., 2017). However, the soil moisture
simulated by these models is often affected by uncertainties in
model parameters, model structure, and forcing data. These
limitations can be reduced by the use of data assimilation
techniques.

Several studies (e.g., Gebler et al., 2019; Lannoy &
Reichle., 2016) have reported the use of data assimilation
methods in models which encompass the vadose zone and
assimilate in situ or remotely sensed surface soil moisture
measurements. Other studies use data assimilation to jointly
estimate states and parameters of models which encompass
the vadose zone. Montzka et al. (2011) noted that joint esti-
mation of states and parameters results in a better estimate of
the soil moisture profile compared to only state estimation.
Hung et al. (2022) assimilated both soil moisture and ground-
water level data in the integrated land surface-subsurface
model CLM-Parflow using the localized ensemble Kalman
filter (EnKF) and analyzed the impact on the characteriza-
tion of soil moisture, evapotranspiration, river discharge, and
groundwater level. Although soil moisture and groundwater
level characterization could be improved substantially, only a
very small improvement was observed for the estimation of
evapotranspiration.

In addition, studies discussed errors in the estimates of
states and parameters with data assimilation approaches (Liu
et al., 2012; Reichle et al., 2008). It was found that errors in

Core Ideas
∙ Soil moisture can be estimated with good accuracy

using soil temperature assimilation.
∙ Soil temperature data assimilation is superior for

estimating soil hydraulic parameters in clayey
soils.

∙ Heat flux is better estimated by soil temperature
assimilation than soil moisture assimilation.

∙ Assimilating both soil moisture and soil tempera-
ture improved estimation of state, parameter and
heat fluxes.

∙ Soil moisture assimilation performs better for high
(low) permeable soil in humid (arid) climate.

the soil moisture profile and soil hydraulic parameter (SHP)
estimation varied as function of the soil type, the accuracy of
surface soil moisture observations, and the assimilation fre-
quency. Montzka et al. (2011) found that estimation of soil
moisture profile is better for silt and loamy sand compared to
clay and loam. Li and Ren (2011) studied the estimation of van
Genuchten–Mualem hydraulic functions using matric poten-
tial observations. They reported larger errors in the estimation
of parameters for soils with higher sand content. Bandara et al.
(2013) also noted that the SHPs are better identified for a soil
column with a higher clay content compared to a soil with
higher sand content.

Studies were also conducted on the estimation of soil mois-
ture from soil temperature measurements. The water and
energy balance equations at the land surface are coupled via
the land surface temperature which affects the latent and sen-
sible heat fluxes (Lakshmi, 2000). Lu et al. (2009) proposed
a method where thermal inertia was first calculated using
daily maximum and minimum soil temperature observations
and then soil moisture content was inversely estimated using
models based on thermal inertia–soil moisture characteristics.
Dunne et al. (2010) pointed out that the dependence of soil
thermal properties on soil moisture allows the estimation of
soil moisture from soil temperature data. In their approach
they determined thermal diffusivity first using soil tempera-
ture data and then soil moisture was estimated from thermal
diffusivity. Given the non-uniqueness in the estimation of
soil moisture from thermal diffusivity, it was suggested that
using data assimilation methods is better than inverse meth-
ods. Dong et al. (2015a, 2015b) showed in a series of synthetic
experiments how the soil moisture profile is estimated from
soil temperature measurements with help of data assimilation
techniques like the EnKF, particle filter, and particle batch
smoother. They suggested that the use of soil temperature
measurements at two depths is sufficient to estimate the soil
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moisture profile and also showed that particle batch smooth-
ing significantly reduced the root mean square error (RMSE)
for the estimation of the soil moisture profile compared to
the particle filter. Further, Dong et al. (2016) attempted esti-
mation of soil moisture along with soil hydraulic properties
and noted that joint estimation of soil states and parameters
improved the accuracy in the estimates of the soil moisture
profile.

Previous studies also compared joint assimilation of soil
moisture (in situ or remotely sensed) and soil temperature
or land surface temperature versus univariate assimilation.
Steenpass et al. (2010) examined the estimation of soil
hydraulic properties using (i) only infrared-measured surface
soil temperature and (ii) both surface soil temperature and
water content at different depths using the Differential Evo-
lution Adaptive Metropolis (DREAM) algorithm for a silty
loam soil. They observed that with the help of land sur-
face temperature measurements alone the estimation of soil
hydraulic properties could be improved and that additional
conditioning to water content data further reduced the uncer-
tainty in the estimation of soil hydraulic properties. Ridler et
al. (2012) studied the calibration of the MIKE-SHE model,
an integrated hydrological modeling system for simultaneous
surface water and groundwater flow, for a sandy soil using
both in situ measurements and satellite retrievals of land sur-
face temperature and surface soil moisture to improve the
estimates of latent and sensible heat fluxes. They found that
the joint use of land surface temperature and soil moisture
outperforms the use of only land surface temperature or soil
moisture in the estimation of fluxes. They also found that
in situ measurements of surface soil temperature and soil
moisture gave improved results compared to satellite-based
observations. Han et al. (2013) studied joint assimilation of
land surface temperature and brightness temperature obser-
vations versus univariate assimilation of these observations
for the estimation of soil moisture and soil temperature pro-
files and latent and sensible heat fluxes. Only for dry periods,
joint assimilation performed marginally better than univariate
assimilation with an additional RMSE reduction of 0.1 K for
the characterization of soil temperature and 1.5 W/m2 for the
characterization of latent heat flux.

Most of the studies discussed above focused on one or
a few selected soil textural classes. There is no reported
study evaluating systematically the effect of soil textural class
(e.g., according the United States Department of Agriculture
[USDA] with 12 soil texture classes) on the estimation of soil
states and parameters using soil moisture and/or soil tempera-
ture observations. In addition, there is a need to understand
how the value of surface soil moisture and soil tempera-
ture measurements varies for different soil types, and for
which type of soils the complementary nature of soil mois-
ture and soil temperature measurements is more enhanced.

In this study, we exhaustively investigate the relative signif-
icance of soil moisture and soil temperature measurements
for the estimation of soil states and parameters for all 12
USDA soil textural classes. We focus also especially on the
performance of soil moisture and soil temperature assimila-
tion for simulating latent heat and sensible heat fluxes. It is
found in several studies that univariate soil moisture assim-
ilation does not improve the simulation of the latent heat
flux (e.g., Gebler et al., 2019; Hung et al, 2022; Pipunic
et al., 2008, 2013). The potential of soil temperature assim-
ilation for better simulating latent heat flux is evaluated here
and compared with soil moisture assimilation. Results will
be discussed in this paper comparing univariate soil mois-
ture or soil temperature assimilation versus joint assimilation
of soil moisture and temperature. We also study the influ-
ence of observation depth on the estimation of soil states,
parameters, and fluxes. Finally, we compare the worth of
soil temperature data to estimate the soil moisture, hydraulic
parameters, and heat flux for different soil types considering
different climate conditions, that is, hot semi-arid, semi-arid,
and sub-humid.

2 MATERIALS AND METHODS

2.1 Forward model

In this study, HYDRUS-1D is used as the forward model.
It can simulate coupled water, vapor, and heat movement in
one-dimensional unsaturated media (Šimůnek et al., 2013).
HYDRUS is a numerical model, which solves Richards’
equation for unsaturated flow and the advection–dispersion
equation for heat transport. The governing equation for water
and vapor transport in HYDRUS is described by a modified
form of the Richards’ equation as follows:

𝜕𝜃𝑇 (ℎ)
𝜕𝑡

= 𝜕

𝜕𝑧

[(
𝐾 +𝐾𝑣ℎ

) (𝜕ℎ

𝜕𝑧
+ 1

)
+
(
𝐾𝐿𝑇 +𝐾𝑣𝑇

) 𝜕𝑇

𝜕𝑧

]
− 𝑆,

(1)

where 𝜃𝑇 is the sum of volumetric soil water content (𝜃)
and vapor content (𝜃𝑣) (cm3/cm3), t (s) and z (cm) (posi-
tive upward) are time and space coordinates, ℎ is pressure
head in the soil column (cm), 𝑇 is temperature (K), 𝐾 and
𝐾𝑣ℎ are isothermal hydraulic conductivity of liquid phase and
vapor phase (cm/s), respectively, 𝐾𝐿𝑇 and 𝐾𝑣𝑇 are thermal
hydraulic conductivity of the liquid phase and vapor phase
(cm2/K/s), respectively, and 𝑆 is the sink term to account
for root water uptake (cm3/cm3/s). In HYDRUS-1D, one can
choose from five different analytical models (Brooks & Corey,
1964; Durner, 1994; Kosugi, 1996; van Genuchten, 1980;
Vogel & Cislerova, 1988) for the soil water retention, 𝜃(ℎ),
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and relative permeability, 𝐾(ℎ), functions. In this study, the
soil hydraulic functions according van Genuchten were used:

𝜃 (ℎ) =

{
𝜃𝑟 +

𝜃𝑠−𝜃𝑟

[1+|𝛼ℎ|𝑛]𝑚 ℎ < 0
𝜃𝑠 ℎ ≥ 0

, (2)

𝐾 (ℎ) = 𝐾𝑠 𝑆𝑙
𝑒

[
1 −

(
1 − 𝑆

1∕𝑚
𝑒

)𝑚]2
, (3)

where, 𝑚 = 1 − 1∕𝑛 and effective saturation 𝑆𝑒 =
𝜃−𝜃𝑟

𝜃𝑠−𝜃𝑟
.

The van Genuchten equation consists of five independent
parameters: 𝜃𝑟 (residual water content) (cm3/cm3), 𝜃𝑠 (satu-
rated water content) (cm3/cm3), 𝐾𝑠 (saturated hydraulic con-
ductivity) (cm/s), and 𝛼 (1/cm), and 𝑛 (-) are van Genuchten
empirical fitting/shape parameters (also called unsaturated
flow parameters). For this study 𝐾𝑠, 𝜃𝑟, 𝜃𝑠, 𝛼, and 𝑛 vary
with the soil types but 𝑙 is kept as a constant with a value
of 0.5 for all soil types.

The governing equation for heat transport in HYDRUS-1D
is as follows:

𝐶𝑝 (𝜃)
𝜕𝑇

𝜕𝑡
+ 𝐿0

𝜕𝜃𝑣

𝜕𝑡
= 𝜕

𝜕𝑧

[
𝜆 (𝜃) 𝜕𝑇

𝜕𝑧

]
−𝐶𝑤𝑞

𝜕𝑇

𝜕𝑧
− 𝐶𝑣

𝜕𝑞𝑣𝑇

𝜕𝑧
− 𝐿0

𝜕𝑞𝑣

𝜕𝑧
, (4)

where 𝜆(𝜃) is the coefficient of apparent thermal conductivity
of the soil (W/m/K), and 𝐶𝑝, 𝐶𝑤, and 𝐶𝑣 are the volumetric
heat capacities (J/K/m3) of the soil medium, liquid phase, and
vapor phase, respectively, 𝑞 and 𝑞𝑣 are water and vapor flux
density (cm/s), and 𝐿0 is volumetric latent heat of vaporiza-
tion of liquid water (J/m3). The heat capacity of composite
soil is expressed as:

𝐶𝑝 (𝜃) =
(
1.92𝑓solid + 2.51𝑓organic + 4.18𝜃

)
106. (5)

Here, 𝑓solid and 𝑓organic refer to volumetric fractions
(cm3/cm3) of solid phase and organic matter, respectively.
Since, in this study it is assumed that there is no organic mat-
ter in the soil, 𝑓solid = 1 − 𝜃𝑠. For the composite soil medium,
𝜆(𝜃) is given by:

𝜆 (𝜃) = 𝜆0 (𝜃) + 𝛽𝑡𝐶𝑤 |𝑞| , (6)

where 𝛽𝑡 is thermal dispersivity (cm). Two models are
available in HYDRUS-1D for the estimation of thermal con-
ductivity (𝜆0). One is the Chung and Horton model (Chung &
Horton, 1987), which provides thermal conductivity for three
soil classes, that is, clay, loam, and sand. The other is the
Campbell model (Campbell, 1985), which requires soil textu-
ral information (sand fraction [𝑓sand], clay fraction [𝑓clay], and
silt fraction [𝑓silt = 𝑓solid − 𝑓sand − 𝑓clay]) to estimate ther-
mal conductivity. In this study, the Campbell model is used to
generate ensembles of thermal conductivities corresponding
to soil moisture and soil texture values:

𝜆0 (𝜃) = 𝐴 + 𝐵𝜃 − (𝐴 −𝐷) exp
[
−(𝐶𝜃)𝐸

]
, (7)

𝐴 =
0.57 + 1.73𝑓sand + 0.93𝑓silt
1 − 0.74𝑓sand − 0.49𝑓silt

− 2.8𝑓solid
(
1 − 𝑓solid

)
,

(7a)

𝐵 = 2.8𝑓solid, (7b)

𝐶 = 1 + 2.6𝑓−1∕2
clay , (7c)

𝐷 = 0.03 + 0.7𝑓 2
solid, (7d)

𝐸 = 4.

Thermal dispersivity (𝛽𝑡) is kept constant with a value of 5
cm for all soil types.

2.2 Sequential data assimilation

This section provides a brief description of the EnKF
and its usage in the study. Further details on the EnKF
can be found in Burgers et al. (1998), Evensen (2003),
Moradkhani et al. (2005), and Chaudhuri et al. (2018a,
2018b). SHPs (log(𝛼), log(𝑛), log(𝐾𝑠)), soil thermal param-
eters (STPs, 𝑓sand and 𝑓clay) and soil states (𝜃 and 𝑇 ) are
estimated simultaneously by assimilating soil moisture and/or
soil temperature observations. The EnKF consists of a forecast
and analysis step. The forecast is given by:

𝑥
𝑖,𝑓

𝜏+1 = 𝑀
(
𝑥𝑖,𝑎
𝜏
, 𝑝𝑖,𝑎

𝜏
, 𝑢𝑖

𝜏

)
, (8)

where 𝑖 refers to the ensemble realization, 𝑎 and 𝑓 denote
analysis and forecast, respectively, 𝜏 is model time step, 𝑀
represents the physical model for 1D moisture and heat trans-
port according Equations (1)–(7), used for propagating soil
states forward in time (𝑥τ+1

𝑖,𝑓
), given soil states (𝑥𝑖,𝑎

𝜏 ), soil

parameters (𝑝𝑖,𝑎𝜏 ), and forcings (𝑢𝑖
𝜏
) at the current time step.

The analysis is given by:

𝜋
𝑖,𝑎

𝑡+1 = 𝜋
𝑖,𝑓

𝑡+1 + 𝛿𝐾𝑡+1

(
𝑦𝑖
𝑡+1 −𝐻𝑥

𝑖,𝑓

𝑡+1

)
, (9)

where, 𝑡 is time of assimilation, π𝑖
𝑡+1 = (𝑥

𝑡+1
𝑖

𝑝𝑡+1
𝑖

) is the vector

with states and parameters, 𝛿 is the damping factor that takes
a value between 0 and 1, 𝑦𝑖

𝑡+1 is a vector containing the per-
turbed observations, 𝐻 is a linear operator that maps model
states to observations, in this study it is composed of 0’s
and 1’s, and 𝐾𝑡+1 is Kalman gain. The damping factor (𝛿) is
applied only for parameter updates and not for state updates.

 15391663, 2024, 1, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/vzj2.20298 by Forschungszentrum

 Jülich G
m

bH
 R

esearch C
enter, W

iley O
nline L

ibrary on [31/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
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The Kalman gain (𝐾𝑡+1) is given by:

𝐾𝑡+1 = 𝑃
𝑓

𝑡+1 𝐻𝑇
(
𝐻𝑃

𝑓

𝑡+1𝐻
𝑇 +𝑅𝑡+1

)−1
, (10)

where 𝑅𝑡+1 is the observation error covariance matrix and
𝑃

𝑓

𝑡+1 the model error covariance matrix.𝑃𝑓

𝑡+1 is estimated from
the ensemble of forecasted results as follows:

𝑃
𝑓

𝑡+1 =
1

𝑁 − 1

𝑁∑
𝑖 = 1

(
𝜋
𝑖,𝑓

𝑡+1 − 𝜋̄
𝑓

𝑡+1

)
(𝜋𝑖,𝑓

𝑡+1 − 𝜋̄
𝑓

𝑡+1)
𝑇 , (11a)

𝜋̄
𝑓

𝑡+1 =
1
𝑁

𝑁∑
𝑖 = 1

𝜋
𝑖,𝑓

𝑡+1, (11b)

where 𝑁 is the number of ensemble members.

2.3 Simulation set-up and experiments

Synthetic experiments are conducted to evaluate the effect of
soil texture, observation depth, and climate on the estima-
tion of soil moisture and temperature profile, soil hydraulic
and thermal parameters, and latent and sensible heat fluxes.
The impact of soil texture is studied using 12 different soil
types according to USDA classification and the impact of
observation depth is studied using soil moisture and soil tem-
perature observations at five different depths from the surface.
To compare the impact of different climates on the estima-
tion of soil states, parameters, and fluxes we have used data
of three meteorological stations, one situated in the Beram-
badi catchment, a second one in the Mulehole catchment (both
are experimental watersheds and are part of Kabini CZO),
and a third meteorological station is situated in Kalaburagi
district, state of Karnataka in India. The Kabini CZO is sit-
uated in the southern part of India and provides time series
of different climatic, hydrological, and geochemical variables
to better understand the hydrological and biogeochemical
cycles of the Kabini basin (Riotte et al., 2021; Sekhar et al.,
2016). Berambadi, Kalaburagi, and Mulehole represent three
different climate zones, that is, semi-arid, hot semi-arid,
and sub-humid, respectively. Figure 1 shows the cumulative
potential evapotranspiration (PET) and precipitation (P) for
all three different regions. The PET/P ratios are 0.8, 1.5, and
2.2 for Mulehole, Berambadi, and Kalaburagi, respectively.
Weather inputs (precipitation, wind speed, relative humid-
ity, air temperature, and solar radiation) are obtained from all
three meteorological stations. Figure 2 shows the time series
of weather inputs of Berambadi.

2.3.1 Reference runs

True (synthetic) soil moisture and soil temperature profiles
are generated using the HYDRUS-1D forward model with
weather data and soil parameters as inputs. Mean values of
SHPs (saturated hydraulic conductivity and van Genuchten
parameters) and STPs (sand fraction and clay fraction) of 12
different soil types are taken from Carsel and Parrish (1988)
and used as true parameters as given in Table 1. The depth of
the soil profile is 2 m and discretized into layers of 1 cm in
HYDRUS. Initial soil moisture content is 0.30 cm3/cm3 and
initial soil temperature 20˚C, uniform along the soil column.
The upper boundary condition for soil moisture transport is
given by the atmospheric boundary condition including sur-
face runoff. The actual water flux across the upper boundary
is controlled by both atmospheric and existing soil moisture
conditions. The lower boundary condition for soil moisture
transport is free drainage. Free drainage is chosen as the lower
boundary condition since the groundwater level in the study
region ranges between 10 and 50 m depth, which is well below
the simulated soil column here. The upper boundary condi-
tion for heat transport is the heat flux estimated from the
soil surface energy balance and the lower boundary condi-
tion is zero gradient. Figures 3 and 4 show the variation of
soil moisture and soil temperature with time and depth for
the reference simulations for the 12 different soil types, using
the meteorological inputs from the weather station installed in
the Berambadi watershed as shown in Figure 2 and the mean
soil hydraulic and thermal parameters given in Table 1. It is
important to note that unless otherwise specified, results are
obtained using meteorological data from the weather station
installed at the Berambadi watershed.

Figure 5 shows soil moisture versus soil temperature for dif-
ferent soils averaged over depth and time. From Figures 3–5
it is observed that for the same meteorological inputs, sandy
soil has a lower soil moisture content compared to clayey soil,
which leads to higher soil temperatures for sandy soil com-
pared to clayey soil. The mean soil moisture varies from 0.1
cm3/cm3 (sand) to 0.37 cm3/cm3 (silty clay loam) and mean
soil temperature varies from 26˚C (sand) to 23˚C (silty clay
loam). Figure 3 shows that in sandy soils infiltration fronts
advance quickly during precipitation events from the surface
to the bottom of the soil column as compared to soils with
a higher clay content, implying that any addition of water at
the surface will be reflected in the whole soil column faster
in sandy soils compared to clayey soils. The color in Figure 3
indicates that the higher soil moisture content and the streaks
are relatively more slanted for soil types with lower hydraulic
conductivity. For clayey soil the moisture content below 50 cm
soil depth is uniform. It is because the drainage of soil mois-
ture in clayey soil by gravity is less but the moisture diffusion
is more. For heat transfer, the streaks in the temperature plot

 15391663, 2024, 1, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/vzj2.20298 by Forschungszentrum

 Jülich G
m

bH
 R

esearch C
enter, W

iley O
nline L

ibrary on [31/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



KANDALA ET AL. 6 of 20Vadose Zone Journal

F I G U R E 1 Cumulative potential evapotranspiration (PET) and cumulative precipitation (P) of three different places in South India, that is, (a)
Berambadi, (b) Kalaburagi, and (c) Mulehole representing different climate zones, that is, semi-arid, hot semi-arid, and sub-humid, respectively.

F I G U R E 2 Time series of daily meteorological inputs: (a) precipitation, (b) global radiation, (c) relative humidity, (d) maximum temperature,
(e) minimum temperature, and (f) wind speed, for the year 2017–2018 obtained from the weather station installed at Berambadi, Kabini CZO.

are more slanted for soil with more clayey soil because of less
convective heat transfer.

2.3.2 Ensemble runs

For estimation of states (soil moisture and soil temperature),
parameters (soil hydraulic and STPs), and fluxes (latent heat
and sensible heat) from soil moisture and/or soil temperature
assimilation, an ensemble of soil parameters is generated con-
sidering SHPs (𝐾𝑠, 𝛼, and 𝑛) to be lognormally distributed,

STPs (𝑓sand and 𝑓clay) to be normally distributed, and 𝜃𝑟 and
𝜃𝑠 deterministic. In this paper, SHPs are independently per-
turbed and estimated, and no pedotransfer function is used for
them. Hundred realizations are used in this study and each
experiment is repeated 10 times to compare robustly the accu-
racy of the estimated soil parameters for different assimilation
settings and different soil textures. The 100 realizations of soil
parameters for each repetition are sampled from a normal dis-
tribution with mean of the parameters ranging from 𝜇 + 2𝜎 to
𝜇 − 2𝜎, where 𝜇 is the true mean value of a parameter and 𝜎

is the standard deviation (see Table 1).
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7 of 20 KANDALA ET AL.Vadose Zone Journal

F I G U R E 3 Time series of true soil moisture profiles (synthetic) over 2 years for 12 different soils simulated using meteorological inputs of
Berambadi watershed as shown in Figure 2 and mean soil hydraulic and thermal properties given in Table 1.

Errors in the estimation of soil moisture and soil tem-
perature are majorly due to uncertainties in forcings, initial
conditions, and soil parameters. Model forcings are perturbed
as indicated in Table 2. Ensembles of soil moisture and soil
temperature observations are generated by perturbing true
observations following a normal distribution with zero mean
and standard deviation of 0.03 cm3/cm3 and 0.2 K, respec-
tively and the perturbations are uncorrelated and also not
correlated in time. Observations of soil moisture and soil
temperature are assimilated daily at 00:00 h (midnight). The
observation error of soil moisture and soil temperature are
the same as the perturbation of the observations, that is, 0.03
cm3/cm3 and 0.2 K, respectively.

A damping factor of 0.1 is applied to counteract filter diver-
gence (Franssen & Kinzelbach, 2008; Keller et al., 2018).
Damping reduces spurious updates of parameters and stabi-
lizes the parameter estimation with EnKF. To further stabilize
the estimation of parameters, they are not updated when the
intensity of precipitation is greater than 30 mm/day (Bauser
et al., 2016). A spin up period of 2 years is chosen in this
study, as it is long enough to reach equilibrium soil moisture

and soil temperature conditions. Weather inputs for the period
2017–2018 are considered for both spin up and simulation.

2.4 Sensitivity analysis

A global sensitivity analysis is carried out using the VARS-
TOOL (https://github.com/vars-tool/vars-tool) (Razavi &
Gupta, 2019; Razavi et al., 2019) to compare the sensitiv-
ity of soil moisture and soil temperature at different depths
to the soil hydraulic [log(𝐾𝑠), log(𝛼), and log(𝑛)] and soil
thermal (𝑓sand and 𝑓clay) parameters for different soil types.
We have adopted a variance-based sensitivity analysis con-
sidering Sobol total-effect index (Sobol, 2001) where the
sensitivity index of output variable 𝑌 = 𝑓 (𝑋1, 𝑋2, .., 𝑋𝑛) to
any input/system parameters 𝑋𝑖 is given as,

𝑆𝑇 𝑖 = 1 −
𝑉 𝑎𝑟

[
𝐸
[
𝑌 |𝑋∼𝑖

]]
𝑉 𝑎𝑟 [𝑌 ]

. (12)

Here 𝑉 𝑎𝑟[] and 𝐸[] represent the calculation of the vari-
ance and expectation of random variable and 𝑋∼𝑖 corresponds
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KANDALA ET AL. 8 of 20Vadose Zone Journal

F I G U R E 4 Time series of true soil temperature profiles (synthetic) over 2 years for 12 different soils simulated using meteorological inputs of
Berambadi watershed as shown in Figure 2 and mean soil hydraulic and thermal properties given in Table 1.

to the vector of all variables except 𝑋𝑖. In this study, 𝑌

can be the soil moisture and soil temperature while 𝑋𝑖 (for
𝑖 = 1, … , 5) are five soil properties [log(𝐾𝑠), log(𝛼), log(𝑛),
𝑓sand, and 𝑓clay]. To perform the sensitivity analysis using the
VARS-TOOL for each of the 12 soil types considered in this
study, 1000 realizations of the parameter sets [log(𝐾𝑠), log(𝛼),
and log(𝑛), 𝑓sand, and 𝑓clay] are generated and time series
of soil moisture and soil temperature for the period of 365
days (year 2017) are obtained using HYDRUS-1D keeping
the meteorological data constant for different runs.

Time aggregated sensitivities of simulated soil moisture
and soil temperature at different depths to soil hydraulic and
thermal parameters are shown in Figure 6. From Figure 6 it
is evident that both soil moisture and soil temperature are
more sensitive to log(𝐾𝑠) compared to other soil parameters
for the majority of soil types. The sensitivity of soil moisture
to log(𝐾𝑠) is higher in the middle region of the soil texture
triangle, that is, loamy soils, whereas the sensitivity of soil
temperature to log(𝐾𝑠) is higher for soils with higher clay
content. In general soil moisture is more sensitive to log(𝐾𝑠)
compared to soil temperature. Figure 6b1,b2 indicates that

the sensitivities of both soil moisture and soil temperature
to log(𝛼) are much smaller for soils with high sand content.
However, compared to soil moisture, soil temperature is more
sensitive to log(𝛼) for all soil types (except for soil moisture at
surface which is most sensitive to 𝛼 and 𝑛). Figure 6c1 shows
that for soils with high clay content such as silty clay and clay
soil, moisture is highly sensitive to log(𝑛) compared to other
SHPs. It is evident from Figure 6d1,e1 that soil moisture is
insensitive to STPs, that is, 𝑓sand and 𝑓clay. Interestingly, the
sensitivity of soil temperature to 𝑓sand is generally less for
soils with higher sand content except for pure sand. On the
contrary, the sensitivity of soil temperature to 𝑓clay is higher
for soils with higher sand content. Comparing the sensitivity
of soil moisture at different soil depths to log(𝐾𝑠), it is clear
that the near surface soil moisture is less sensitive to log(𝐾𝑠)
than deeper soil moisture, for all soil types. The unsaturated
flow parameters 𝛼 and 𝑛 affect soil moisture at 0 cm more than
the deeper soil moisture. Soil temperature at 5 cm is the most
sensitive to log(𝐾𝑠) and the sensitivity of soil temperature to
log(𝐾𝑠) decreases for greater depths. The sensitivity of soil
temperature to the other SHPs decreases also with depth.
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F I G U R E 5 Comparison of soil moisture and soil temperature
averaged over soil column of 2 m and 2 years for 12 different soil types.

T A B L E 2 Perturbation of forcings for the generation of weather
inputs for ensemble members.

Forcings Error distribution Mean
Standard
deviation

Precipitation (mm) Gaussian, multiplicative 1 0.2

Radiation (W/m2) Gaussian, multiplicative 1 0.1

Air temperature (˚C) Gaussian, additive 0 0.5

Relative humidity (%) Gaussian, additive 0 1

Wind speed (m/s) Gaussian, multiplicative 1 0.2

3 RESULTS

The synthetic experiments where states (soil moisture and
soil temperature), parameters (soil hydraulic and STPs), and
fluxes (latent heat and sensible heat) are estimated are con-
ducted for the 12 different soil types. For each soil type the
study is done with open loop (OL) and three different assimi-
lation settings. The three assimilation settings are: (i) SM5,
where soil moisture alone at 5 cm is assimilated; (ii) ST5,
soil temperature alone at 5 cm is assimilated; (iii) SMT5,
both soil moisture and soil temperature at 5 cm are assimi-
lated. In addition, to study the effect of measurement depth
on the estimation accuracy, soil moisture and soil tempera-
ture are assimilated at different depths from the surface, that
is, 0 cm (skin surface) (SM0/ST0, soil moisture, or soil tem-
perature at surface), 5 cm (SM5/ST5), 10 cm (SM10/ST10),
30 cm (SM30/ST30), and 50 cm (SM50/ST50). The impact
of adding more observations for the estimation of soil states,
parameters, and fluxes is also studied. SM550 is assimila-
tion of soil moisture measured at both 5 and 50 cm, ST550
is assimilation of soil temperature measured at both 5 and
50 cm, and SMT550 is assimilation of soil moisture and soil
temperature measurements at both 5 and 50 cm.
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KANDALA ET AL. 10 of 20Vadose Zone Journal

F I G U R E 6 Comparison of sensitivity of soil moisture and soil temperature at different depths to soil hydraulic and thermal properties (a1, a2)
log(𝐾𝑠), (b1,b2) log(𝛼), (c1,c2) log(𝑛), (d1,d2) 𝑓sand, and (e1,e2) 𝑓clay. Soil types: S (sand), LS (loamy sand), SL (sandy loam), L (loam), Si (silt),
SiL (silt loam), SCL (sandy clay loam), CL (clay loam), SiCL (silty clay loam), SC (sandy clay), SiC (silty clay), C (clay).

3.1 Effect of soil texture

3.1.1 Estimation of state variables

Figure 7 shows that the mean RMSE (average over 10 repe-
titions) for the estimation of the soil moisture profile in the
open loop ranges from 0.016 cm3/cm3 (silty clay) to as high
as 0.066 cm3/cm3 (silt loam). The wide range of RMSE in
the open loop for different soil textures is due to the high
range of uncertainty in the SHPs and the varying sensitivi-
ties of soil moisture to SHPs among soil textures. The mean
RMSE for the estimation of the soil moisture profile is ≤0.01
cm3/cm3 for all soils when soil moisture data at 5 cm depth is
assimilated.

Assimilation of soil temperature data at 5 cm improves the
estimation of the soil moisture profile compared to the open
loop in all 12 soil types. For this case, the mean RMSE for the
estimation of the soil moisture profile is ≤0.04 cm3/cm3 for all
soil types. ST5 shows a better performance for the estimation
of the soil moisture profile for soils with a higher clay con-
tent compared to soils with a higher sand content. This could

be explained by the observed higher correlation between soil
moisture and soil temperature in clayey soils compared to
sandy soils and also higher sensitivity of soil temperature to
SHPs in clayey soils compared to sandy soils.

The RMSE reduction (compared to open loop) for soil
types, “S,” “SL,” “L,” “Si,” and “SCL,” is around 30% when
ST5 is assimilated (Table 3). However, reductions higher than
65% are found for soil textures “SiCL,” “SiC,” and “C.” A
little additional improvement in the estimation of the soil
moisture profile is observed when both soil moisture at 5
cm and soil temperature at 5 cm are assimilated simultane-
ously (SMT5) as compared to ST5 and SM5 alone, especially
in soils with higher clay content. The improvement is very
small for scenario SMT5 compared to SM5 as SM5 assimila-
tion already reduced the RMSE to 0.01 cm3/cm3. The RMSE
reduction averaged over all soil types (always compared with
open loop) is 79% for assimilating soil moisture alone and
81% for joint soil moisture and temperature assimilation
(SMT5).

Figure 7b compares the estimation of the soil temperature
profile using OL, SM5, ST5, and SMT5. A significant RMSE
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11 of 20 KANDALA ET AL.Vadose Zone Journal

F I G U R E 7 Comparison of root mean square error (RMSE) for the estimation of (a) soil moisture profile and (b) soil temperature profile for
open loop simulations (OL), univariate assimilation of soil moisture observations from 5 cm depth (SM5), univariate assimilation of soil temperature
observations at 5 cm depth (ST5), and joint soil moisture and soil temperature assimilation at 5 cm depth (SMT5). Each box plot represents the
results from 10 tests using different initial parameter sets. In the box plot, the middle line denotes the median value, the edges of the box are the
interquartile range (IQR), the maximum length of the whiskers is set to be 1.5 times the IQR, and values larger/smaller than the maximum/minimum
the whiskers are considered as outliers (hollow circles). Soil types: S (sand), LS (loamy sand), SL (sandy loam), L (loam), Si (silt), SiL (silt loam),
SCL (sandy clay loam), CL (clay loam), SiCL (silty clay loam), SC (sandy clay), SiC (silty clay), C (clay).

T A B L E 3 Root mean square error (RMSE) (average of 10 tests) of the estimated soil moisture profile for 12 soil types compared to open loop
(OL) for different data assimilation experiments (soil moisture observations from 5 cm depth [SM5], soil temperature observations at 5 cm depth
[ST5], and soil moisture and soil temperature assimilation at 5 cm depth [SMT5]).

RMSE (%) S LS SL L Si SiL SCL CL SiCL SC SiC C
OL 100 100 100 100 100 100 100 100 100 100 100 100

SM5 42 26 17 14 20 18 16 20 24 22 20 16

ST5 67 62 69 68 68 60 69 56 33 49 8 23

SMT5 42 29 20 14 17 16 17 21 19 21 6 12

Abbreviations: S (sand), LS (loamy sand), SL (sandy loam), L (loam), Si (silt), SiL (silt loam), SCL (sandy clay loam), CL (clay loam), SiCL (silty clay loam), SC (sandy
clay), SiC (silty clay), C (clay).

T A B L E 4 Root mean square error (RMSE) (average of 10 tests) of the estimated soil temperature profile for 12 soil types for different data
assimilation experiments (soil moisture observations from 5 cm depth [SM5], soil temperature observations at 5 cm depth [ST5], and soil moisture
and soil temperature assimilation at 5 cm depth [SMT5]) compared to open loop (OL).

RMSE (%) S LS SL L Si SiL SCL CL SiCL SC SiC C
OL 100 100 100 100 100 100 100 100 100 100 100 100

SM5 89 100 82 67 71 72 69 60 60 64 61 76

ST5 43 46 33 35 32 26 33 30 25 34 22 29

SMT5 38 41 33 31 24 23 28 25 22 25 19 28

Abbreviations: S (sand), LS (loamy sand), SL (sandy loam), L (loam), Si (silt), SiL (silt loam), SCL (sandy clay loam), CL (clay loam), SiCL (silty clay loam), SC (sandy
clay), SiC (silty clay), C (clay).

reduction in the estimation of the soil temperature profile for
all soils is observed when ST5 is assimilated. The RMSE
reduction (compared to open loop) for all soil types is between
55% for soils “S” and 80% for “SiC” (see Table 4). Assim-
ilation of soil temperature observation at a particular depth
improves the whole profile of soil temperature through corre-
lation with soil temperature at different depths. Joint updating

of states and parameters further improves the estimation of the
soil temperature profile.

It is also observed that assimilation of soil moisture
(SM5) can reduce the RMSE of the soil temperature pro-
file compared to the OL. The RMSE for the estimation of
the soil temperature profile reduces on average 27% com-
pared to the open loop run for the SM5 assimilation, with
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KANDALA ET AL. 12 of 20Vadose Zone Journal

F I G U R E 8 Comparison of root mean square error (RMSE) for the estimation of soil hydraulic properties (a) log(𝐾𝑠), (b) log(𝛼), and (c) log(𝑛)
and soil thermal properties (d) 𝑓sand and (e) 𝑓clay for the data assimilation experiments soil moisture observations from 5 cm depth (SM5), soil
temperature observations at 5 cm depth (ST5), and soil moisture and soil temperature assimilation at 5 cm depth (SMT5). Each box plot represents
the results from 10 tests using a set of different initial parameters. Soil types: S (sand), LS (loamy sand), SL (sandy loam), L (loam), Si (silt), SiL (silt
loam), SCL (sandy clay loam), CL (clay loam), SiCL (silty clay loam), SC (sandy clay), SiC (silty clay), C (clay).

higher RMSE reduction for soils with a higher clay con-
tent and lower reduction in RMSE for soils with higher
sand content. The RMSE of the soil temperature profile
reduces by an additional 4%, if soil moisture and soil
temperature are jointly assimilated (compared to soil temper-
ature alone).

3.1.2 Estimation of soil parameters

Figure 8 shows the estimation accuracy of SHPs and STPs
for different soil types for the SM5, ST5, and SMT5 assim-
ilation scenarios. Improvement in the estimation of SHP is
observed for all three scenarios. In general, error in the esti-
mation of log(𝛼) is higher than for log(𝐾𝑠) and log(𝑛), which
can be explained by the lower sensitivity of soil moisture and
soil temperature to log(𝛼) compared to log(𝐾𝑠) and log(𝑛) as
deduced from the sensitivity analysis. It is observed that ST5

performed better for soils with higher clay content compared
to sandy soils, especially for log(𝐾𝑠). SM5 performed better
for soils with higher sand content especially for log(𝐾𝑠)which
can be explained through sensitivity analysis. Figure 6a1
shows that the sensitivity of soil moisture to log(𝐾𝑠) is higher
for loamy soils as compared to soils with higher clay content
like SiC or C.

Assimilation of SMT5 performed better for all 12 soil
types compared to SM5 and ST5 for the estimation of SHPs
(see Figure 8). On average (over all 12 soil types) assimila-
tion of SM5 improves the estimation of log(𝐾𝑠), log(𝛼), and
log(𝑛) compared to the open loop by 59%, 35%, and 56%,
respectively, and assimilation of ST5 49%, 32%, and 52%,
respectively. The joint assimilation of soil moisture and soil
temperature (SMT5) gives the largest improvements of 74%,
50%, and 75%, respectively.

Figure 8d,8e shows that there is no improvement over
open loop in the estimation of STPs for univariate soil
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13 of 20 KANDALA ET AL.Vadose Zone Journal

F I G U R E 9 Comparison of root mean square error (RMSE) for the estimation of (a) latent heat and (b) sensible heat flux for the data
assimilation scenarios soil moisture observations from 5 cm depth (SM5), soil temperature observations at 5 cm depth (ST5), and soil moisture and
soil temperature assimilation at 5 cm depth (SMT5). Each box plot represents the results from 10 tests using different initial parameter sets. Soil
types: S (sand), LS (loamy sand), SL (sandy loam), L (loam), Si (silt), SiL (silt loam), SCL (sandy clay loam), CL (clay loam), SiCL (silty clay
loam), SC (sandy clay), SiC (silty clay), C (clay).

moisture assimilation. Soil moisture and soil temperature are
one-way coupled, which implies that modifications in soil
moisture change soil thermal conductivity, soil heat capac-
ity, surface energy balance, and ultimately soil temperature
(Dong et al., 2016). On the other hand, change in soil temper-
ature does not influence SHPs and soil moisture. Assimilation
of ST5 improves the estimation of STPs compared to the open
loop, and error in the estimation of 𝑓sand is higher compared
to 𝑓clay when ST5 is assimilated. Assimilation of ST5 per-
formed better than SMT5 for the estimation of 𝑓clay, whereas
SMT5 performed better than ST5 for the estimation of 𝑓sand.
Assimilation of ST5 improves the estimation of 𝑓sand and
𝑓clay compared to the open loop by 8% and 45%, respectively,
and for SMT5 assimilation the improvement is 18% and 37%,
respectively.

3.1.3 Estimation of latent and sensible heat
fluxes

From Figure 9a,b it is observed that assimilation of soil mois-
ture and/or soil temperature (SM5, ST5, and SMT5) also
improves the estimation of latent and sensible heat fluxes
compared to OL. Estimation of LE and H is better for 8 out
of the 12 soil types when ST5 is assimilated as compared to
SM5 assimilation. Assimilation of SM5 performs better com-
pared to ST5 for the estimation of LE and H in the soil types
with higher sand content such as sand and loamy sand. On
average, the assimilation of SM5 improves the estimation of
latent heat and sensible heat by 35% and 33%, respectively,
compared to the open loop. The assimilation of ST5 improves
the estimation of LE and H both by 38%. Tables 5 and 6 show
that SMT5 resulted for all soil types in better estimation of
both latent heat (LE) and sensible heat (H) fluxes compared

to SM5 and ST5. Combined assimilation of soil moisture and
soil temperature (SMT5) improves the estimation of LE and
H by 49% and 46%, respectively, compared to the open loop.
Seneviratne et al. (2010) show that soil moisture and evapo-
transpiration are strongly coupled in the transition zone, that
is, under water limited conditions and the strength of coupling
decreases as the regime changes from water limited to energy
limited. Due to weak coupling of soil moisture and evapotran-
spiration under energy limited conditions, improving the soil
moisture profile does not impact much the estimation of water
and energy fluxes. Assimilation of soil temperature is rela-
tively more important in energy limited conditions for better
estimation of latent and sensible heat fluxes.

3.2 Effect of assimilation depth

Table S1 shows the estimated soil states, fluxes, and param-
eters for different soil types and assimilation scenarios,
including different measurement depths for soil moisture and
temperature. Measurements at 0 cm (skin surface), 5, 10, 30,
and 50 cm depth are chosen to check the influence of mea-
surement depth on the estimation accuracy. The influence of
the measurement depth on the estimation accuracy is in-line
with the sensitivity results. The deeper the soil moisture mea-
surement, the better the estimation of the soil moisture profile.
On the other hand, the assimilation of soil temperature mea-
surements at 5 cm depth results in the best estimates of soil
moisture and temperature profiles, while deeper soil temper-
ature measurements have less value. Latent and sensible heat
fluxes are better estimated when the measurement depth is
at or near the surface (0 or 5 cm depth) and observations
below 5 cm depth have limited value for the estimation of the
fluxes. It is important to keep here in mind that simulations are
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KANDALA ET AL. 14 of 20Vadose Zone Journal

T A B L E 5 Root mean square error (RMSE) (average of 10 tests) of latent heat estimation for 12 soil types for the data assimilation experiments
soil moisture observations from 5 cm depth (SM5), soil temperature observations at 5 cm depth (ST5), and soil moisture and soil temperature
assimilation at 5 cm depth (SMT5) compared to open loop run.

RMSE (%) S LS SL L Si SiL SCL CL SiCL SC SiC C
OL 100 100 100 100 100 100 100 100 100 100 100 100

SM5 62 60 68 74 70 60 74 61 63 57 55 74

ST5 75 73 70 75 65 56 74 54 50 51 38 64

SMT5 60 56 52 58 57 48 57 46 45 47 34 53

Abbreviations: S (sand), LS (loamy sand), SL (sandy loam), L (loam), Si (silt), SiL (silt loam), SCL (sandy clay loam), CL (clay loam), SiCL (silty clay loam), SC (sandy
clay), SiC (silty clay), C (clay).

T A B L E 6 Root mean square error (RMSE) (average of 10 tests) of sensible heat estimation for 12 soil types for the data assimilation
experiments soil moisture observations from 5 cm depth (SM5), soil temperature observations at 5 cm depth (ST5), and soil moisture and soil
temperature assimilation at 5 cm depth (SMT5) compared to open loop run.

RMSE (%) S LS SL L Si SiL SCL CL SiCL SC SiC C
OL 100 100 100 100 100 100 100 100 100 100 100 100

SM5 78 73 74 74 66 53 73 53 63 55 69 76

ST5 82 78 67 71 67 48 70 44 49 51 55 63

SMT5 74 63 53 58 57 41 57 39 44 45 54 57

Abbreviations: S (sand), LS (loamy sand), SL (sandy loam), L (loam), Si (silt), SiL (silt loam), SCL (sandy clay loam), CL (clay loam), SiCL (silty clay loam), SC (sandy
clay), SiC (silty clay), C (clay).

for bare soil conditions. The estimation of Ks is better when
soil moisture is measured deeper, but the estimation of shape
parameters 𝛼 and 𝑛 is better for shallow measurements. The
estimation of all three SHP’s is better when soil temperature is
measured at 0 or 5 cm, compared to deeper layers. Soil tem-
perature measurements at more than 30 cm depth have very
low value for the estimation of soil states, parameters, and
fluxes. The impact of adding more observations for the esti-
mation of soil states, parameters, and fluxes is also studied for
four soil types, that is, loamy sand, loam, silt, and clay. In gen-
eral, adding more observations further reduces the RMSE and
the best estimation accuracy is observed for SMT550, that is,
assimilation of soil moisture and soil temperature measure-
ments at both 5 and 50 cm. The RMSE reduction for the soil
moisture profile estimation is around 15% for ST550 assim-
ilation (soil temperature at both 5 and 50 cm) compared to
ST5 assimilation, except for clay soil where the RMSE reduc-
tion is only 6%. The RMSE reduction for the soil moisture
profile estimation is only 5% for SM550 assimilation (soil
moisture at both 5 and 50 cm) compared to SM5 assimilation.
The estimation of latent and sensible heat flux is not much
improved when additional observations from deeper layers are
assimilated. A small (2%–3%) RMSE reduction is observed in
the estimation of SHPs for SM550 compared to SM5 assim-
ilation, whereas 10%–15% RMSE reduction is observed for
ST550 compared to ST5.

3.3 Effect of climate

To investigate the robustness of our study, we have compared
the estimation accuracy of states, parameters, and fluxes for
three different meteorological forcings from three different
places of South India, that is, Berambadi, Kalaburagi, and
Mulehole representing three different climate zones, that is,
semi-arid, hot semi-arid, and sub-humid, respectively. The
simulations for Mulehole and Kalaburagi are done for 1 year
and the RMSE for the estimation of states and fluxes is cal-
culated for the last 100 days of the simulation. The RMSE for
the parameter estimates is calculated at the end of the simu-
lation period. For the sake of comparing Berambadi results
with those of Mulehole and Kalaburagi in this particular sec-
tion, the RMSE for state variables and fluxes at the Berambadi
location were assessed for the final 100 days of the first
year of simulation and the RMSE for parameter estimates in
Berambadi were determined at the end of the first year. This
approach enables a direct comparison of the accuracy of state
and flux predictions, as well as parameter estimates, between
Berambadi and the other two locations, as in the rest of the
paper simulations for Berambadi were analyzed for a period
of 2 years.

Table 7 shows that in general soil temperature assimila-
tion resulted in better estimation of soil states, parameters,
and fluxes for silt and clay soils than for loamy sand and
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15 of 20 KANDALA ET AL.Vadose Zone Journal

T A B L E 7 Root mean square error (RMSE) (average of 10 tests) of estimation of soil states, parameters and fluxes for different soil types and
meteorological forcings compared to open loop (OL) run.

RMSE (%)
Berambadi (semi-arid) PET/P
= 1.5

Kalaburagi (hot semi-arid)
PET/P = 2.2

Mulehole (sub-humid) PET/P
= 0.8

OL SM5 ST5 SMT5 SM5 ST5 SMT5 SM5 ST5 SMT5
Soil moisture Loamy sand 100 31 65 33 31 61 34 27 75 28

Loam 100 16 69 15 23 60 16 15 84 16

Silt 100 24 75 22 20 60 18 23 74 19

Clay 100 15 35 12 17 67 15 21 65 14

Soil
temperature

Loamy sand 100 98 49 41 93 43 43 83 64 58

Loam 100 73 44 36 75 31 30 82 68 56

Silt 100 83 39 33 76 23 16 64 27 24

Clay 100 78 34 30 84 33 23 93 48 49

Latent heat Loamy sand 100 57 69 51 58 73 56 54 70 46

Loam 100 73 81 52 86 85 62 64 71 51

Silt 100 76 61 52 72 56 50 71 55 45

Clay 100 79 66 60 64 67 55 83 65 56

Sensible heat Loamy sand 100 71 73 60 79 84 77 69 78 62

Loam 100 77 81 59 91 85 67 68 74 56

Silt 100 71 60 51 67 52 47 71 55 46

Clay 100 85 69 65 62 74 54 84 71 59

log 𝐾𝑠 Loamy sand 100 48 75 42 49 66 40 44 81 41

Loam 100 30 65 22 41 56 23 26 78 22

Silt 100 38 69 28 32 62 28 33 74 24

Clay 100 82 60 61 79 68 71 84 72 63

log 𝛼 Loamy sand 100 93 82 80 90 82 79 90 78 77

Loam 100 69 80 45 69 91 56 54 77 35

Silt 100 68 78 58 70 73 51 52 71 38

Clay 100 84 78 64 90 82 78 80 80 74

log 𝑛 Loamy sand 100 54 68 47 59 70 50 54 70 41

Loam 100 61 71 42 65 75 51 57 79 51

Silt 100 57 62 37 59 31 23 59 36 29

Clay 100 19 41 12 14 68 11 18 65 14

𝑓sand Loamy sand 100 98 97 96 105 102 96 98 84 91

Loam 100 94 101 92 105 107 102 99 89 91

Silt 100 96 91 84 99 86 88 95 88 90

Clay 100 100 85 75 104 102 66 103 85 76

𝑓clay Loamy sand 100 97 42 41 101 66 69 104 82 83

Loam 100 92 57 76 101 58 63 98 88 83

Silt 100 95 74 85 101 83 88 101 90 90

Clay 100 95 64 76 95 54 82 93 79 86

loam soils, for all three different meteorological forcings. The
estimation of latent and sensible heat flux improved more
with soil temperature assimilation than with soil moisture
assimilation for silt and clay soil types. On the other hand,
in loamy sand and loam soils the estimation of latent and
sensible heat flux improved more with soil moisture assim-
ilation than with soil temperature assimilation. This was the

case for all three sites. Simultaneous assimilation of both soil
moisture and temperature consistently performed better for
estimating soil states, parameters, and fluxes for all textures
and sites compared to univariate assimilation of soil moisture
or soil temperature. In general, for soil moisture assimilation
the performance increased as we move from hot semi-arid
to sub-humid climate regions (sub-humid > semi-arid > hot
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KANDALA ET AL. 16 of 20Vadose Zone Journal

F I G U R E 1 0 Correlation between soil moisture and soil
temperature at 5 cm depth for 12 soils. Soil types: S (sand), LS (loamy
sand), SL (sandy loam), L (loam), Si (silt), SiL (silt loam), SCL (sandy
clay loam), CL (clay loam), SiCL (silty clay loam), SC (sandy clay),
SiC (silty clay), C (clay).

semi-arid) and from permeable to less permeable soils (loamy
sand and loam > silt and clay). In general, for soil temper-
ature assimilation the estimation of latent and sensible heat
fluxes improved more in sub-humid climates (sub-humid >

semi-arid > hot semi-arid). The RMSE reduction (compared
to open loop) for the estimation of latent heat flux, averaged
over four soil types, was 35% for Mulehole (sub-humid), 31%
for Berambadi (semi-arid), and 30% for Kalaburagi (hot semi-
arid). The RMSE reduction for the estimation of sensible heat
flux, averaged over four soil types, was 30% for Mulehole,
29% for Berambadi, and 26% for Kalaburagi.

4 DISCUSSION

Figure 10 shows the correlation between soil moisture and
soil temperature for different soil textures, based on daily data
for 10 simulation experiments and 100 ensemble members
per simulation experiment. Positive correlation is observed
between soil moisture and soil temperature as we have used
soil temperature observations at mid-night in our study. Pre-
vious studies (Dong et al., 2015b; Kayssi et al., 1990) showed
positive correlation when soil temperature at night was con-
sidered but negative correlation when soil temperature at day
was considered. Thus, the matching trend between our study
and previous studies with regard to the correlation between
soil moisture and soil temperature confirms the fidelity
of our numerical simulation results. With increase in soil
moisture content, maximum soil temperature decreases (day-
time) and minimum soil temperature (night-time) increases.

With increase in soil moisture the soil heat storage capac-
ity increases which leads to reduced difference between
day-time soil temperature and night-time soil temperature.
The decrease in day-time soil temperature is larger than the
increase in night-time soil temperature which leads to lower
average soil temperature for soils with higher soil moisture
content (Kayssi et al., 1990). Correlations between soil mois-
ture at 5 cm and soil temperature at 5 cm are higher for clayey
soils than for sandy soils. Equation (7) shows that thermal
conductivity controls the vertical soil temperature distribu-
tion, which depends on soil texture and soil moisture. Soils
with higher clay content have a higher water retention capacity
than soils with higher sand content, which leads to higher soil
moisture contents in clayey soils compared to sandy soils. In
clayey soils, soil moisture is the major control of soil tempera-
ture, whereas in sandy soils it is soil texture. This is the reason
for the better estimation of soil moisture using soil tempera-
ture measurements in soils with higher clay content compared
to soils with higher sand content.

Correlation between soil moisture and soil temperature
improves the estimation of soil moisture from soil temper-
ature observations and vice versa. Soil hydraulic properties
influence the vertical soil moisture distribution, and soil mois-
ture content influences the thermal conductivity and therefore
also the soil temperature distribution. Soil thermal properties
determine the vertical soil temperature distribution, but soil
temperature change hardly influences soil hydraulic proper-
ties or soil moisture. This is the reason why soil temperature
contains information to estimate both SHPs and STPs while
soil moisture only allows to estimate SHPs. The estimation of
soil moisture using soil temperature measurements makes use
of correlations between soil moisture and soil temperature and
improved estimates of SHPs, whereas soil temperature esti-
mation using soil moisture measurements relies exclusively
on the correlation between soil moisture and soil tempera-
ture. That is why there is a significant difference between
the estimation accuracy (averaged over all 12 soils) of the
soil moisture profile using soil temperature observation (47%
RMSE reduction) and estimation accuracy of the soil temper-
ature profile using soil moisture observations (27% RMSE
reduction). In this synthetic study we have assumed that
the heat transport model is perfect without any uncertainty,
whereas in real field condition the equations (Equations 4–7)
that link soil moisture and soil temperature may not be accu-
rate which will lead to lower RMSE reduction compared to a
synthetic study.

Compared to the assimilation of observation at one depth,
the assimilation of soil moisture or soil temperature observa-
tions at two different depths enhances the estimation of the
soil moisture and soil temperature profiles. This is because
the information on the soil moisture and soil temperature gra-
dients is utilized in case of assimilation of observations at
two different depths (Dong et al., 2015b). The improvement
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17 of 20 KANDALA ET AL.Vadose Zone Journal

F I G U R E 1 1 Frequency distribution of soil moisture at 5 cm depth for different soil types (a1–a3) Loamy sand, (b1–b3) loam, (c1–c3) silt, and
(d1–d3) clay and locations Kalaburagi, Berambadi, and Mulehole.

in the estimation of soil moisture or soil temperature profile
when observations at two different depths are assimilated will
be more effective for two-layered soils with contrasting soil
properties among different layers. In two-layered soils infor-
mation on the moisture or thermal gradient will provide more
information compared to homogeneous soils where the corre-
lation of soil moisture or soil temperature between depths is
high and univariate assimilation is already able to improve the
characterization of this single-layer soil system.

Figure 11 shows the frequency distribution of the true soil
moisture values at 5 cm depth for different soil types and
climate regions. The frequency distribution is more skewed
toward lower soil moisture values for loamy sand and loam
soils in Kalaburagi and Berambadi compared to Mulehole.
On the other hand, the frequency distribution is more skewed
toward higher soil moisture values for silt and clay soils
in Mulehole compared to Kalaburagi and Berambadi. Soil
parameters are better retrieved when the soil moisture obser-
vations are well distributed and cover the larger range of the
soil moisture characteristic curve (Brandhorst et al., 2017).
As a consequence, low permeable soils under humid con-
ditions and high permeable soils under dry conditions are
worst cases for soil parameter estimation as in the former case
observed soil moisture is often near saturation and in the lat-
ter case observations are more concentrated around low soil
moisture values. Best cases for soil parameter estimation and

ultimately state and flux estimation (via soil moisture assim-
ilation) are high permeable soils under humid conditions and
low permeable soils under dry conditions. Soil parameters can
be better estimated by adding observations which increase
the spread of soil moisture contents and using observations
from the whole year with alternating drying and wetting
cycles. Alternatively, multiple types of observations can be
assimilated.

5 CONCLUSIONS

In this study we have investigated the value of soil moisture
and soil temperature measurements at 5 cm depth to estimate
soil moisture and temperature profiles, soil hydraulic and
thermal parameters, and latent and sensible heat fluxes for 12
different soil textures covering the whole soil texture classi-
fication according to USDA, on the basis of synthetic experi-
ments. This has been done using HYDRUS-1D as a software
to model water and heat flow in soils, and the EnKF to assim-
ilate soil moisture and/or soil temperature measurements.
We found that soil temperature assimilation had different
impacts on soil moisture profile characterization depending
on the soil type with larger improvements in soil moisture
characterization for soils with higher clay content compared
to soils with higher sand content. Sensitivity analysis showed
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KANDALA ET AL. 18 of 20Vadose Zone Journal

that soil temperature in clayey soils is more sensitive to
SHPs (mainly log(𝐾𝑠)) compared to sandy soils. It is also
observed that soil temperature is more sensitive to clay
fraction than sand fraction. Significant additional RMSE
reduction (around 15%) is observed for the estimation of
SHPs with joint soil moisture and temperature assimilation,
compared to univariate assimilation. For the majority of
soil textures (8 out of 12) the RMSE reduction for the
estimation of latent and sensible heat fluxes is higher when
soil temperature is assimilated instead of soil moisture. The
combined assimilation of soil moisture and soil tempera-
ture provides again the best results. The results are also
compared between hot semi-arid, semi-arid, and sub-humid
sites. Results suggest that the performance of soil moisture
assimilation is higher in hot semi-arid regions for low
permeable soils such as silt and clay and is higher in sub-
humid regions for high permeable soils such as loamy sand
and loam.

The results show the potential of soil temperature (or
land surface temperature) measurements for improving the
estimates of land–atmosphere exchange fluxes, especially in
clayey soils where soil temperature data show more value
for improved evapotranspiration estimation than soil moisture
measurements. The simulation experiments also indicate that
estimation of SHPs is important for improved estimation of
soil states and evapotranspiration. In land surface data assim-
ilation, the estimation of SHPs is still not common, in part
because parameter estimation is difficult on the basis of coarse
remote sensing information.

Synthetic studies are important to explore in a controlled
fashion the value of different measurement types for improv-
ing model predictions, or the role of different soil textures.
However, it is very important to test the methodology for real
field conditions as it can be expected that under real field
conditions model structural uncertainty plays a larger role,
which is difficult to handle in the data assimilation proce-
dure. In our study we neglected model structural error and
considered only errors related to unknown soil parameters and
meteorological forcings. Under real world conditions, mod-
eling the heat transport in the soil column is difficult and
the relation between soil moisture and soil temperature may
not be accurate leading to relatively worse performance com-
pared to a synthetic study. In addition, in the synthetic case
presented in this paper we assumed the soil to be homo-
geneous with vertically constant soil parameters, while in
reality soils are vertically heterogeneous with multiple soil
layers of different soil characteristics. It is difficult to esti-
mate soil hydraulic and thermal parameters of multi-layered
soils using only near-surface measurements. Observations at
different depths may be required to better characterize the
soil and ultimately estimate soil moisture and temperature at
deeper depths. Therefore, it can be expected that the value

of near-surface soil moisture and soil temperature measure-
ments in vertically heterogeneous soils will be smaller than
for homogeneous soils.

Future research should focus on implementing this
approach on layered soils, using remote sensing observations
and extending the applications toward vegetated surfaces.
This research stresses the importance to consider soil tem-
perature (or land surface temperature) measurements besides
soil moisture measurements, to improve evapotranspiration
modeling. This exhaustive synthetic study showed that the
potential of soil temperature measurements to improve ET
characterization is in theory higher than the potential of soil
moisture measurements. In addition, research is required to
evaluate the value of vegetation variables such as LAI, NDVI
along with soil moisture and soil temperature for the esti-
mation of soil moisture and soil temperature profiles, soil
parameters, and land surface fluxes in layered soils with crops.
The obvious next step is to apply this methodology on real
field data.
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